class: title-slide, bottom, hide_logo background-image: url(https://pbs.twimg.com/media/EiPx8D4VgAEA2Z1.jpg) background-size: cover .right[ # Analysing Netball Data in R ## Alice Sweeting, PhD <br> <br> Image by Suncorp Super Netball <br> Ball Artwork by © Simone Thomson Yorta-Yorta/ Wurundjeri ] <style type="text/css"> pre { background: #FFFFFF; max-width: 100%; overflow-x: scroll; } </style>
--- class: left # Getting Started with Suncorp Super Netball Data View these slides at [sportstatisticsrsweet.rbind.io/RNetball/Slides](sportstatisticsrsweet.rbind.io/RNetball/Slides) to follow along. -- First, ensure the packages below are installed or up-to-date: ```r # Create a list of the packages required NetballRPackages <- c( 'tidyverse', 'ggdark', 'devtools') # Install listed packages install.packages(NetballRPackages) ``` -- Next, install [`SuperNetballR`](https://stevelane.github.io/superNetballR/) via `devtools` with a big thanks to Steve Lane for creating the package. ```r devtools::install_github("stevelane/superNetballR") ``` --- class: left # Analysing Suncorp Super Netball (Team) Data .panelset[ .panel[.panel-name[R Code - Data Import] ```r # Load required packages library(superNetballR) library(tidyverse) library(ggdark) # 2020 season ID SeasonID = "11108" # Download the Firebirds versus Vixens Rd13 match FirebirdsVixens_Rd13 <- downloadMatch(SeasonID, 13, 4) # Tidy the match FirebirdsVixens <- tidyMatch(FirebirdsVixens_Rd13) # Inspect the first few rows head(FirebirdsVixens, 12) ``` ] .panel[.panel-name[R Output - Data Import] ``` ## # A tibble: 12 x 9 ## period squadId squadName squadNickname squadCode stat value round game ## <int> <int> <chr> <chr> <chr> <chr> <dbl> <int> <int> ## 1 1 804 Melbourne V~ Vixens MVX reboun~ 0 13 4 ## 2 2 804 Melbourne V~ Vixens MVX reboun~ 1 13 4 ## 3 3 804 Melbourne V~ Vixens MVX reboun~ 0 13 4 ## 4 4 804 Melbourne V~ Vixens MVX reboun~ 0 13 4 ## 5 1 807 Queensland ~ Firebirds QFB reboun~ 2 13 4 ## 6 2 807 Queensland ~ Firebirds QFB reboun~ 2 13 4 ## 7 3 807 Queensland ~ Firebirds QFB reboun~ 4 13 4 ## 8 4 807 Queensland ~ Firebirds QFB reboun~ 2 13 4 ## 9 1 804 Melbourne V~ Vixens MVX goalsF~ 8 13 4 ## 10 2 804 Melbourne V~ Vixens MVX goalsF~ 9 13 4 ## 11 3 804 Melbourne V~ Vixens MVX goalsF~ 8 13 4 ## 12 4 804 Melbourne V~ Vixens MVX goalsF~ 7 13 4 ``` ] .panel[.panel-name[R Code - Unique Stats] ```r # Inspect the first 30 stats head(unique(FirebirdsVixens$stat), 30) ``` ] .panel[.panel-name[R Output - Unique Stats] ``` ## [1] "rebounds" "goalsFromCentrePass" ## [3] "netPoints" "penalties" ## [5] "generalPlayTurnovers" "deflectionWithNoGain" ## [7] "goal_from_zone2" "goal_from_zone1" ## [9] "timeInPossession" "points" ## [11] "possessions" "goalMisses" ## [13] "goalAssists" "disposals" ## [15] "attempt_from_zone2" "centrePassReceives" ## [17] "obstructionPenalties" "attempt_from_zone1" ## [19] "goals" "offsides" ## [21] "goal2" "goal1" ## [23] "deflectionPossessionGain" "contactPenalties" ## [25] "gainToGoalPerc" "goalsFromTurnovers" ## [27] "centrePassToGoalPerc" "turnoverToGoalPerc" ## [29] "interceptPassThrown" "gain" ``` ] ] --- class: left # Visualising Suncorp Super Netball (Team) Data .panelset[ .panel[.panel-name[R Code - Plot #1] ```r # List of Super Netball colours that are CVD friendly SquadName_Colours <- c("#FDE725FF", "#73D055FF", "#27AD81FF", "#7E4E90FF", "#CC6A70FF", "#2D708EFF", "#C0C0C0", "#F68F46FF") names(SquadName_Colours) <- c("Sunshine Coast Lightning", "West Coast Fever", "Melbourne Vixens", "Queensland Firebirds", "Adelaide Thunderbirds", "NSW Swifts", "Collingwood Magpies", "GIANTS Netball") # Plot - lets look at one stat to start with FirebirdsVixens %>% filter(stat=="generalPlayTurnovers") %>% ggplot(aes(x = period, y = value, colour = squadName)) + geom_point() ``` ] .panel[.panel-name[Plot #1] <img src="Slides_files/figure-html/unnamed-chunk-4-1.png" width="1080" /> ] .panel[.panel-name[R Code - Plot #2] ```r # Make it even happier! FirebirdsVixens %>% filter(stat=="generalPlayTurnovers") %>% ggplot(aes(x = period, y = value, colour = squadName)) + geom_line(linetype = "dashed") + geom_point(size = 8) + geom_text(aes(label = value), size = 4, colour = "black", check_overlap = TRUE) + scale_colour_manual(values = SquadName_Colours) + scale_fill_manual(values = SquadName_Colours) + scale_x_continuous(limits = c(1,4), breaks = c(1:4), labels = function(x) paste0("Quarter ", x)) + scale_y_continuous(expand = c(0,0), limits = c(0, 10), breaks = seq(0,10, by = 2)) + labs(x = NULL, y = "Number of General Play Turnovers \n", title = "\n Rd13 - Firebirds v Vixens \n General Play Turnovers \n") + dark_theme_gray() + theme(plot.title = element_text(size = 14, face = "bold", hjust = 0.5), plot.background = element_rect(fill = "grey10"), panel.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.background = element_blank(), axis.title.y = element_text(size = 12, face = "bold"), axis.ticks.x = element_line(color = "grey30", size = 0.1), axis.line.x = element_line(color = "grey30", size = 0.1), axis.text.x = element_text(size = 12, face = "bold"), axis.ticks.y = element_line(color = "grey30", size = 0.1), axis.line.y = element_line(color = "grey30", size = 0.1), axis.text.y = element_text(size = 10, face = "bold"), legend.title = element_blank(), legend.position = "bottom") ``` ] .panel[.panel-name[Plot #2] <img src="Slides_files/figure-html/unnamed-chunk-5-1.png" width="1080" /> ] ] --- class: left # Analysing Suncorp Super Netball (Athlete) Data .panelset[ .panel[.panel-name[R Code - Data Import] ```r # Tidy individual player data PlayerData <- tidyPlayers(FirebirdsVixens_Rd13) # Inspect first 12 rows head(PlayerData, 12) ``` ] .panel[.panel-name[R Output - Data Import] ``` ## # A tibble: 12 x 11 ## period squadId playerId shortDisplayName firstname surname squadName stat ## <int> <int> <int> <chr> <chr> <chr> <chr> <chr> ## 1 1 804 80577 Weston, J Jo Weston Melbourn~ rebo~ ## 2 2 804 80577 Weston, J Jo Weston Melbourn~ rebo~ ## 3 3 804 80577 Weston, J Jo Weston Melbourn~ rebo~ ## 4 4 804 80577 Weston, J Jo Weston Melbourn~ rebo~ ## 5 1 804 1014127 Smith, A Allie Smith Melbourn~ rebo~ ## 6 2 804 1014127 Smith, A Allie Smith Melbourn~ rebo~ ## 7 3 804 1014127 Smith, A Allie Smith Melbourn~ rebo~ ## 8 4 804 1014127 Smith, A Allie Smith Melbourn~ rebo~ ## 9 1 804 80293 Philip, T Tegan Philip Melbourn~ rebo~ ## 10 2 804 80293 Philip, T Tegan Philip Melbourn~ rebo~ ## 11 3 804 80293 Philip, T Tegan Philip Melbourn~ rebo~ ## 12 4 804 80293 Philip, T Tegan Philip Melbourn~ rebo~ ## # ... with 3 more variables: value <chr>, round <int>, game <int> ``` ] .panel[.panel-name[R Code - Data Tidy] ```r # Call out the stats that are giving us issues PlayerData %>% filter((stat %in% c("startingPositionCode", "currentPositionCode"))) %>% head(12) ``` ] .panel[.panel-name[R Output - Data Tidy] ``` ## # A tibble: 12 x 11 ## period squadId playerId shortDisplayName firstname surname squadName stat ## <int> <int> <int> <chr> <chr> <chr> <chr> <chr> ## 1 1 804 80577 Weston, J Jo Weston Melbourn~ star~ ## 2 2 804 80577 Weston, J Jo Weston Melbourn~ star~ ## 3 3 804 80577 Weston, J Jo Weston Melbourn~ star~ ## 4 4 804 80577 Weston, J Jo Weston Melbourn~ star~ ## 5 1 804 1014127 Smith, A Allie Smith Melbourn~ star~ ## 6 2 804 1014127 Smith, A Allie Smith Melbourn~ star~ ## 7 3 804 1014127 Smith, A Allie Smith Melbourn~ star~ ## 8 4 804 1014127 Smith, A Allie Smith Melbourn~ star~ ## 9 1 804 80293 Philip, T Tegan Philip Melbourn~ star~ ## 10 2 804 80293 Philip, T Tegan Philip Melbourn~ star~ ## 11 3 804 80293 Philip, T Tegan Philip Melbourn~ star~ ## 12 4 804 80293 Philip, T Tegan Philip Melbourn~ star~ ## # ... with 3 more variables: value <chr>, round <int>, game <int> ``` ] ] --- class: left # Analysing Suncorp Super Netball (League - Team) Data .panelset[ .panel[.panel-name[R Code - Import All Teams] ```r # First, create an empty data.frame SSN_Rd13 <- FirebirdsVixens[0,] # Call out the round we are after, can change this to whatever round you are interested in! getRound = 13 # Run a loop to grab data for Rd13 for (mm in 1:4) { # Download match matchData <- downloadMatch(SeasonID,getRound,mm) # Tidy data tidy_match <- tidyMatch(matchData) # Append SSN_Rd13 <- rbind(tidy_match,SSN_Rd13) } # Inspect tail(SSN_Rd13, 12) ``` ] .panel[.panel-name[R Ouput - Import All Teams] ``` ## # A tibble: 12 x 9 ## period squadId squadName squadNickname squadCode stat value round game ## <int> <int> <chr> <chr> <chr> <chr> <dbl> <int> <int> ## 1 1 8119 Collingwood ~ Magpies MNC inter~ 3 13 1 ## 2 2 8119 Collingwood ~ Magpies MNC inter~ 2 13 1 ## 3 3 8119 Collingwood ~ Magpies MNC inter~ 4 13 1 ## 4 4 8119 Collingwood ~ Magpies MNC inter~ 1 13 1 ## 5 1 8117 Sunshine Coa~ Lightning SCL homeT~ 0 13 1 ## 6 2 8117 Sunshine Coa~ Lightning SCL homeT~ 0 13 1 ## 7 3 8117 Sunshine Coa~ Lightning SCL homeT~ 0 13 1 ## 8 4 8117 Sunshine Coa~ Lightning SCL homeT~ 0 13 1 ## 9 1 8119 Collingwood ~ Magpies MNC homeT~ 1 13 1 ## 10 2 8119 Collingwood ~ Magpies MNC homeT~ 1 13 1 ## 11 3 8119 Collingwood ~ Magpies MNC homeT~ 1 13 1 ## 12 4 8119 Collingwood ~ Magpies MNC homeT~ 1 13 1 ``` ] .panel[.panel-name[R Code - Plot #3] ```r # Now plot GPT for each team SSN_Rd13 %>% filter(stat=="generalPlayTurnovers") %>% group_by(squadName) %>% summarise(Total = sum(value)) %>% arrange(desc(Total)) %>% ggplot(aes(x = reorder(squadName, -Total), y = Total, colour = squadName)) + geom_point(size = 10) + geom_segment(aes(x = squadName, y = 0, xend = squadName, yend = Total, colour = squadName), linetype = "dashed") + geom_text(aes(label = Total), size = 4, colour = "black", check_overlap = TRUE) + scale_colour_manual(values = SquadName_Colours) + scale_fill_manual(values = SquadName_Colours) + scale_y_continuous(expand = c(0,0), limits = c(0, 40), breaks = seq(0,40, by = 10)) + labs(x = NULL, y = "Number of General Play Turnovers \n", title = "\n Suncorp Super Netball 2020 \n Rd13 - General Play Turnovers \n") + dark_theme_gray() + theme(plot.title = element_text(size = 14, face = "bold", hjust = 0.5), plot.background = element_rect(fill = "grey10"), panel.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.background = element_blank(), axis.title.y = element_text(size = 12, face = "bold"), axis.ticks.x = element_line(color = "grey30", size = 0.1), axis.line.x = element_line(color = "grey30", size = 0.1), axis.text.x = element_text(size = 12, face = "bold", angle = 45, vjust = 1, hjust = 1), axis.ticks.y = element_line(color = "grey30", size = 0.1), axis.line.y = element_line(color = "grey30", size = 0.1), axis.text.y = element_text(size = 10, face = "bold"),legend.title = element_blank(), legend.position = "none") ``` ] .panel[.panel-name[Plot #3 - Team Data] <img src="Slides_files/figure-html/unnamed-chunk-9-1.png" width="1080" /> ] ] --- class: left # Analysing Suncorp Super Netball (League - Athlete) Data .panelset[ .panel[.panel-name[R Code - Import All Athletes] ```r # First, create an empty data.frame SSN_Rd13_Players <- PlayerData[0,] # Call out the round we are after, can change this to whatever round you are interested in! getRound = 13 # Run a loop to grab data for Rd13 for (mm in 1:4) { # Download match matchData <- downloadMatch(SeasonID,getRound,mm) # Tidy data tidy_player <- tidyPlayers(matchData) # Append SSN_Rd13_Players <- rbind(tidy_player,SSN_Rd13_Players) } # Inspect tail(SSN_Rd13_Players, 12) ``` ] .panel[.panel-name[R Ouput - All Athletes] ``` ## # A tibble: 12 x 11 ## period squadId playerId shortDisplayName firstname surname squadName stat ## <int> <int> <int> <chr> <chr> <chr> <chr> <chr> ## 1 1 8119 1010545 Nelson, S Shimona Nelson Collingw~ inte~ ## 2 2 8119 1010545 Nelson, S Shimona Nelson Collingw~ inte~ ## 3 3 8119 1010545 Nelson, S Shimona Nelson Collingw~ inte~ ## 4 4 8119 1010545 Nelson, S Shimona Nelson Collingw~ inte~ ## 5 1 8119 1021073 Black, K Kaitlyn Black Collingw~ inte~ ## 6 2 8119 1021073 Black, K Kaitlyn Black Collingw~ inte~ ## 7 3 8119 1021073 Black, K Kaitlyn Black Collingw~ inte~ ## 8 4 8119 1021073 Black, K Kaitlyn Black Collingw~ inte~ ## 9 1 8117 1014128 Proscovia, P Peace Prosco~ Sunshine~ inte~ ## 10 2 8117 1014128 Proscovia, P Peace Prosco~ Sunshine~ inte~ ## 11 3 8117 1014128 Proscovia, P Peace Prosco~ Sunshine~ inte~ ## 12 4 8117 1014128 Proscovia, P Peace Prosco~ Sunshine~ inte~ ## # ... with 3 more variables: value <chr>, round <int>, game <int> ``` ] .panel[.panel-name[R Code - Plot #4] ```r # Plot the top 10 athletes for stat = feedWithAttempt SSN_Rd13_Players %>% filter(!(stat %in% c("startingPositionCode", "currentPositionCode"))) %>% mutate_at("value", as.numeric) %>% filter(stat=="feedWithAttempt") %>% group_by(shortDisplayName, squadName) %>% summarise(Total = sum(value)) %>% arrange(desc(Total)) %>% head(10) %>% ggplot(aes(x = reorder(shortDisplayName, -Total), y = Total, colour = squadName)) + geom_point(size = 10) + geom_segment(aes(x = shortDisplayName, y = 0, xend = shortDisplayName, yend = Total, colour = squadName), linetype = "dashed") + geom_text(aes(label = Total), size = 4, colour = "black", check_overlap = TRUE) + scale_colour_manual(values = SquadName_Colours) + scale_fill_manual(values = SquadName_Colours) + scale_y_continuous(expand = c(0,0), limits = c(0, 40), breaks = seq(0,40, by = 10)) + labs(x = NULL, y = "Number of Feeds with Attempt \n", title = "\n Suncorp Super Netball 2020 \n Rd13 - Feeds with Attempt (Individual Players) \n") + dark_theme_gray() + theme(plot.title = element_text(size = 14, face = "bold", hjust = 0.5), plot.background = element_rect(fill = "grey10"), panel.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.background = element_blank(), axis.title.y = element_text(size = 12, face = "bold"), axis.ticks.x = element_line(color = "grey30", size = 0.1), axis.line.x = element_line(color = "grey30", size = 0.1), axis.text.x = element_text(size = 12, face = "bold", angle = 45, vjust = 1, hjust = 1), axis.ticks.y = element_line(color = "grey30", size = 0.1), axis.line.y = element_line(color = "grey30", size = 0.1), axis.text.y = element_text(size = 10, face = "bold"),legend.title = element_blank(), legend.position = "none") ``` ] .panel[.panel-name[Plot #4] <img src="Slides_files/figure-html/unnamed-chunk-11-1.png" width="1080" /> ] ] --- class: left, top # Thank you for Listening! .pull-left[ <img src="https://raw.githubusercontent.com/SportStatisticsRSweet/RLadiesMelbourneTalk/master/Dudley.jpg" width="70%"/> ] <span style = 'font-size: 50%;'> .pull-right[ <br> ## <svg style="height:0.8em;top:.04em;position:relative;fill:black;" viewBox="0 0 512 512"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> [Alice.Sweeting@vu.edu.au](mailto:Alice.Sweeting@vu.edu.au)<br> ## <svg style="height:0.8em;top:.04em;position:relative;fill:black;" viewBox="0 0 512 512"><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg> [alicesweeting](https://twitter.com/alicesweeting)<br> ## <svg style="height:0.8em;top:.04em;position:relative;fill:black;" viewBox="0 0 496 512"><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg> [SportStatisticsRSweet](https://github.com/SportStatisticsRSweet)<br> ## <svg style="height:0.8em;top:.04em;position:relative;fill:black;" viewBox="0 0 512 512"><path d="M326.612 185.391c59.747 59.809 58.927 155.698.36 214.59-.11.12-.24.25-.36.37l-67.2 67.2c-59.27 59.27-155.699 59.262-214.96 0-59.27-59.26-59.27-155.7 0-214.96l37.106-37.106c9.84-9.84 26.786-3.3 27.294 10.606.648 17.722 3.826 35.527 9.69 52.721 1.986 5.822.567 12.262-3.783 16.612l-13.087 13.087c-28.026 28.026-28.905 73.66-1.155 101.96 28.024 28.579 74.086 28.749 102.325.51l67.2-67.19c28.191-28.191 28.073-73.757 0-101.83-3.701-3.694-7.429-6.564-10.341-8.569a16.037 16.037 0 0 1-6.947-12.606c-.396-10.567 3.348-21.456 11.698-29.806l21.054-21.055c5.521-5.521 14.182-6.199 20.584-1.731a152.482 152.482 0 0 1 20.522 17.197zM467.547 44.449c-59.261-59.262-155.69-59.27-214.96 0l-67.2 67.2c-.12.12-.25.25-.36.37-58.566 58.892-59.387 154.781.36 214.59a152.454 152.454 0 0 0 20.521 17.196c6.402 4.468 15.064 3.789 20.584-1.731l21.054-21.055c8.35-8.35 12.094-19.239 11.698-29.806a16.037 16.037 0 0 0-6.947-12.606c-2.912-2.005-6.64-4.875-10.341-8.569-28.073-28.073-28.191-73.639 0-101.83l67.2-67.19c28.239-28.239 74.3-28.069 102.325.51 27.75 28.3 26.872 73.934-1.155 101.96l-13.087 13.087c-4.35 4.35-5.769 10.79-3.783 16.612 5.864 17.194 9.042 34.999 9.69 52.721.509 13.906 17.454 20.446 27.294 10.606l37.106-37.106c59.271-59.259 59.271-155.699.001-214.959z"/></svg> [SportStatisticsRSweet.rbind.io](http://sportstatisticsrsweet.rbind.io/)<br> ]